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EXECUTIVE SUMMARY 

 
This report will present and discuss the research performed during a 6-year period 

(4/24/95 to 12/31/01) under support of Contract FIA-95-1326 between NREL and Davis, 

Joseph & Negley.  The total budget amount during this 6-year period was $737,942.  The 

contract, “Electrodeposition of CuIn1-xGaxSe2 Materials for Solar Cells,” was integrally 

linked with a much larger effort in CIGS at NREL supported by the DOE to develop the 

scientific understanding of this materials system, solar cells, and processes that can 

address the goals of the National Photovoltaics Program [1]. Through DOE support, the 

investigators developed much of the technology and device fabrication infrastructure 

applied to electrodeposited (ED) materials. 

 The electrodeposition process is simple and fast, and can synthesize multinary 

precursors for subsequent processing into CuInxGa1-xSe2 (CIGS) thin-film absorbers for 

solar cells.  The device fabricated using electrodeposited CIGS precursor layers resulted 

in total-area conversion efficiencies up to 15.4% [2].  As-deposited precursors are Cu-

rich CIGS.  Additional In, Ga, and Se (up to 50%) are added to the precursor films by 

physical vapor deposition (PVD) to adjust the final semiconductor film composition to 

about Cu0.95In0.75Ga0.25Se2.  The electrodeposited device parameters are compared with 

those of an 18.8% PVD device [3].  The tools used for comparison are current-voltage, 

capacitance-voltage, and spectral response characteristics.  The individual parameters of 

the device prepared from electrodeposited precursor films showed no significant 

deterioration from those of the PVD CIGS cells.    

 We also developed a buffer-based electrodeposition bath under this subcontract. Using 

buffer solution enhances the stability of the electrodeposition process, and no metal 

oxides or hydroxides precipitate out of the solution.  The buffer-based bath also deposits 

more gallium in the precursor films. As-deposited precursors are stoichiometric or 

slightly Cu-rich CIGS.  Only a minimal amount (5%-10% of total materials) of indium 

was added to the electrodeposited precursor films by physical vapor deposition to obtain 

a 9.4%-efficient device. 
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In general, the films and devices have been characterized by inductively-coupled 

plasma spectrometry, Auger electron spectroscopy, X-ray diffraction, electron-probe 

microanalysis, current-voltage, capacitance-voltage, and spectral response. 

 During the period of this research, the preferred communication has been extensive 

publications and presentations in journals and technical conferences, as shown in the 

bibliography.  This report will not reproduce the details already published.  It comprises a 

brief guide through existing publications and references, adding only limited detail as 

needed to bridge gaps in prior work.  Selected copies of the work published under the 

contract are attached for convenience.  
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INTRODUCTION 
 

 Photovoltaic solar cells are a very attractive source of clean energy.  At present, the 

photovoltaic industry primarily uses wafers of single-crystal and polycrystalline silicon, 

which generally have a wafer thickness in the range of 100–300 µm.  The wafers must go 

through several processing steps and then be integrated into a module.  The high material 

and processing costs make these modules relatively expensive.  Thin-film solar cell 

technology is a promising alternative to silicon solar cell technology.  CuIn1-xGaxSe2 

(CIGS) has become one of the leaders in this field.  Its large optical absorption 

coefficient, due to a direct energy gap, permits the use of thin layers (1−2 µm) of active 

material.  CIGS solar cells are also known for their long-term stability [4].  All these 

qualities have brought CIGS-based devices to the forefront in solar cell applications.  

The recent record-breaking 18.8%-efficient [3] CIGS-based device fabricated in our 

research laboratory is based on a multistep process using physical vapor deposition 

(PVD).  The PVD method is an excellent tool for understanding film growth and for 

developing models, but challenging to scale up.  Sputtering techniques are suitable for 

large-area deposition; however, they require expensive vacuum equipment and sputtering 

targets.  Electrodeposition (ED) is a highly suitable preparation method to obtain low-

cost precursor films.  In 1983, we demonstrated for the first time that CIS could be 

prepared by the electrodeposition process [5].  Since then, several groups including us 

have investigated the electrodeposition of CIGS materials [6-10].  The ED process could 

provide: (a) very good-quality film with very low capital investment; (b) a low-cost, 

high-rate process; (c) use of very low-cost (e.g., low-purity salts, solvents) starting 

materials because of automatic purification of the deposited materials during plating; (d) 

a large-area, continuous, multicomponent, low-temperature deposition method; (e) 

deposition of films on a variety of shapes and forms (wires, tapes, coils, and cylinders); 

(f) controlled deposition rates and effective material use (up to 95%); and (g) minimum 

waste generation (solution can be recycled).  

 



 4

EXPERIMENTAL 
 

1.  Preparation of CIGS films using standard solutions 
 

ED precursor films are deposited from an acidic bath (pH~2) containing 0.02-0.05M 

CuCl2, 0.04-0.06M InCl3, 0.01-0.03M H2SeO3, 0.08-0.1M GaCl3, and 0.7-1M LiCl 

dissolved in deionized water.  The range of bath compositions and process conditions is 

presented in detail in U.S. patents 5,871,630, 5730,852, and 5,804,054 [11-13].  Cu, In, 

Ga, and Se are co-deposited from the solution at room temperature onto the substrate in a 

vertical cell, as shown in Figure 1, in which the electrodes are suspended from the top of 

the cell.  The ED precursors are prepared in a three-electrode cell in which the reference 

is a platinum pseudo-reference, the counter is platinum gauze, and the working electrode 

is the substrate.  The depositions are performed by a non-stirring diffusion process 

(movement of a species under the influence of a gradient of chemical potential, i.e., a 

concentration gradient).  

Figure 1.  The electrodeposition set-up. 

 

ElectrodepositionElectrodeposition Process Process
Electrical variables: ¥ Potentials (V) (half-cell potential, overpotential, É )

¥ Current (I)
¥ Coulombs (Q)

Ğ +

Electrode variables:
¥ Material
¥ Surface area
¥ Geometry
¥ Surface condition

Electrical variables:
¥ Mode (diffusion, convection)
¥ Surface concentration
¥ Adsorption

Solution variables:
¥ Bulk concentration of electroactive (CO, CR)
¥ Concentrations of other species (electrolyte, pH, É )
¥ Solvent

eĞ

03264005
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 Compositions of the as-deposited precursors are determined by inductively coupled 

plasma (ICP) analysis. The as-deposited precursors are Cu-rich, and additional In, Ga, 

and Se are added by PVD to adjust their final composition to CuIn1-xGaxSe2.  During this 

step, the substrate temperature is maintained at 560°±10°C.  These target compositions 

are Cu poor, as determined and optimized under the DOE-supported program [3, 14].  

The photovoltaic devices are then completed with a 50-nm layer of chemically deposited 

CdS, 50 nm of RF-sputtered intrinsic ZnO, 350 nm of Al-doped ZnO, and bilayer Ni/Al 

top contacts deposited by e-beam using the process optimized for PVD devices made in 

our laboratories that have demonstrated efficiencies up to 18.8% [3].  Finally, a 100-nm 

layer of MgF2 is deposited to minimize reflection.  The final configuration for all devices 

reported in this paper is MgF2/ZnO/CdS/CuIn1-xGaxSe2/Mo/glass. 

 

2.  Preparation of CIGS Films Using Buffer Solutions 
 

The electrodeposition of CIGS films (pH ~ 2) on cathodes is most likely caused by the 

combination of electrochemical and chemical reactions as follows:   

       Eo vs. SHE 

Cu (II) + 2e → Cu      0.342 V   (1) 

In (III) + 3e → In     -0.338 V   (2) 

Ga (III) + 3e → Ga     -0.549 V   (3) 

H2SeO3 + 4H+ + 4e  → Se + 3H2O     0.74 V   (4) 

Cu, In, Ga, Se → CuxInyGazSen    Chemical reaction  (5) 

The electrodeposition is carried out in pH buffer “hydrion” (pH 3) that is a mixture of 

sulfamic acid and potassium biphthalate [15].  The role of the buffer solution could be 

understood by the following reactions: 

2-(HO2C)C6H4CO2
- (aq) +  H3O+ (aq) ⇔ 2-(HO2C)C6H4CO2H (aq) + H2O  (l)  (6) 

H2N-SO3H (aq) + H2O (l) ⇔ H2N-SO3
- (aq)+ H3O+ (aq)    (7) 

H2N-SO3H (aq) + OH- (aq) ⇔ H2N-SO3
- (aq)+ H2O (l)    (8) 

H2N-SO3
- (aq) + H3O+ (aq) ⇔ H2N-SO3H (aq)+ H2O (l)    (9) 

H2N-SO3H (aq) + H3O+ (aq) ⇔ H2N+-SO3H (aq)+ H2O (l)    (10) 
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The composition of the as-deposited electrodeposited precursors as analyzed by ICP 

analysis was between CuIn0.68Ga0.19Se1.94 and CuIn0.51Ga0.35Se1.94. Previously, the 

precursor compositions prepared in the absence of buffer solution (which resulted in a 

15.4%-efficient device) was between CuIn0.32Ga0.01Se0.93 and CuIn0.35Ga0.01Se0.99.  The 

new electrodeposition bath that includes a buffer solution was stable for several weeks, 

and no metal oxides or hydroxides precipitated out of solution.  The present deposition 

bath also allows electrodepositing more gallium in the precursor films.  This buffer-based 

electrodeposition bath provides an improved deposition process for producing 

stoichiometric CIGS precursor thin films with enough concentration of each element that 

minimal, if any, additional vapor deposition processing is required.  The CIGS absorber 

layers are prepared from the present precursor films by adding only about 2000 Å of 

indium and selenium by the PVD step.  The best devices prepared from these precursor 

films were about 9.4% efficient (Figure 2).  Current-voltage (I-V) characterization is 

carried out at AM1.5 illumination (1000 W/m2, 25°C).  The fill factor and open-circuit 

voltage for these devices were only about 64% and 0.413 V, respectively.   

 

 
Figure 2.  Current-voltage characteristic of a device prepared from electrodeposited precursor film. 

(Area = 0.43 cm2; Voc = 0.413 V; Jsc = 35.41 mA/cm2; FF = 64%; Efficiency = 9.4%). 
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RESULTS AND DISCUSSION 
 
 The morphology of the precursor films and devices were investigated by scanning 

electron microscopy (SEM).  Figure 3 show the SEM image of the representative ED 

precursor films.  As the micrograph shows, the as-deposited precursor films are densely 

packed and have very small particle size.  Figures 4 and 5 are SEM micrographs of the 

representative PVD device and ED device, respectively.  The morphology of the ED 

device differs significantly from the PVD device.  The PVD device has larger grain-size 

compared with the ED device.  In some instances, we also noticed some significant lift-

off at the Mo/CIGS interface for ED devices prepared from Cu-rich precursor films, as 

shown in Fig. 5.  The precursor deposition conditions and morphology are described in 

our earlier papers [6,16].  

 The device prepared from ED precursor film was examined by Auger analysis.  The 

PVD addition of the In, Ga, and Se is observed to produce a nonuniform Ga/(In+Ga) 

distribution.  An Auger analysis of the cell is presented in Fig. 6.  The Auger analysis 

shows nonuniform distribution of Ga in the absorber.  The Ga hump is not helpful for 

hole collection.  We expected to improve the device efficiencies by optimizing the Ga 

distribution in the absorber layers.  The optimized layers should have less Ga in the front 

and more Ga on the back, which facilitates hole collection. We were not able to obtain 

such an optimized device.  

Figure 7 shows the current density vs. voltage (J-V) curves of the best devices 

prepared from ED film completed with a 50% PVD step.  The I-V characterization was 

carried out at AM1.5 spectrum (ASTM E 892-87 Global), in which the intensity of 

illumination was 1000 W/m2.  The solar cell made from the ED precursor material has 

device efficiencies of 15.4%.  The quantum efficiencies (QE) of the cells under 

illumination (1000 W/m2) are shown in Fig. 8.  This figure indicates that the bandgap, Eg, 

of the ED cell is 1.20 eV [Ga/(In+Ga) = 0.39]. 
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Figure 3. SEM image of an electroplated CIGS precursor film. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SEM image of a PVD device. 

 

Figure 5. SEM image of a representative ED device. 
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Figure 6. Auger analysis of ED device (15.4%). 

 

We compared the 15.4%-efficient ED cell with the 18.8%-efficient PVD cell [17]. 

The device prepared from ED precursor film seems to compare well with the 18.8%-

efficient PVD device in open-circuit voltage (Voc), and less well in short-circuit current 

(Jsc); however, because of the bandgap difference of 80 mV, one would expect a higher 

voltage in the ED device if all other qualities of the junction were equal. The capacitance-

voltage (C-V) results show fairly uniform dopant density of 1016 cm-3 for the ED cell.  

These are both within the typical range for high-quality CIGS cells. 
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Figure 7.  I-V characteristics of an ED device (Voc = 0.666 V, Isc = 12.76 mA, Jsc = 30.51 mA/cm2, 
Fill Factor = 75.56%, Efficiency = 15.4%).  
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Figure 8.  Quantum-efficiency data for the 15.4%-efficient ED device. 
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Table 1. Parameters of the Devices Prepared from Electrodeposition Precursor 

(ED Device) and also from Physical Vapor Deposition (PVD Device) 
 

Cell ED device  PVD device 
Ga/(In+Ga) 0.4 0.28 
Area [cm2] 0.418 0.432 
Voc [V] 0.666 0.678 
Jsc [mA/cm2] 30.51 35.2 
Vmax [V] 0.554 0.567 
Jmax [mA/cm2] 27.8 34.5 
FF [%] 75.6 78.6 
rshunt   [Ω-cm2] 2000 10000 
Rseries   [Ω-cm2] 0.3 0.2 
Ideality Factor [A] 1.8 1.5 
Depletion Width [µm] 0.2 0.5 
Hole Density [cm-3] 1x1016 1x1016 
Bandgap [eV] 1.20 1.12 
Efficiency [%] 15.4 18.8 

 
 
 
Electrical characterization data of the devices prepared from ED precursors are listed in Table 

1.  Electrical characterization of the devices included I-V in the dark and under AM 1.5, 100-

mW/cm2 illuminated conditions, QE, and C-V measurements.  Resistance and diode-quality 

parameters were extracted from the J-V data.  The shunt resistance (rshunt) is a measure of 

leakage and is indicated by the slope of the J-V curve in reverse bias.  The device prepared 

from ED precursor demonstrates slight leakage in the light, with shunt resistances of 

1000−2000 ohm-cm2, as compared to the PVD device, with a higher value of 10,000 ohm-cm2.  

Series resistance (Rseries) is indicative of the quality of the bulk material, whereas the diode-

quality factor (A) indicates whether there is significant excess forward current through 

recombination states and hopping paths. Both of these quantities are extracted from the region 

of the curve between the maximum power point and open-circuit voltage.  As with shunting, 

the series resistance is not a significant factor for any of the cells.  
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Table 2.  Comparison of Primary ED Parameters with the 
 Record 18.8%-Efficient PVD Cell 

 
 

 ED vs. PVD (adjusted for Eg) 
Efficiency Difference [%] 3.4 (3.4) 
Difference from Voc [%] 0.3 (1.4) 
Difference from Jsc [%] 2.3 (1.2) 
Difference from FF [%] 0.8 (0.8) 

 
 
 

Table 2 shows the relative contributions of the primary solar-cell parameters to the 

lower performance seen in the ED cell.  The differences in voltage and current can be 

misleading if cells of different bandgap are compared; hence note the second values in 

parenthesis, which are the performance differences for a common bandgap.  The second values 

in comparison with the PVD device show, (a) somewhat smaller voltages attributed to the 

excess forward current, (b) somewhat smaller currents primarily due to lower collection of 

carriers created by the more penetrating infrared photons, and (c) a small fill-factor difference 

for the ED cell. In summary, the individual parameters of the device prepared from 

electrodeposited precursor films showed no significant deterioration from those of the PVD 

CIGS cells. 
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CONCLUSIONS 
 

Devices fabricated using ED CIGS precursors resulted in efficiencies of 15.4% [2].  The 

quality of CIGS-based films and devices prepared from the solution-based ED precursor film is 

very promising.  The device-quality ED precursor films are Cu-rich CIGS films.  Additional In 

and/or Ga, and Se are added to the precursor films by PVD to adjust the final composition to 

CuIn1-xGaxSe2. The solution-based precursor process will be more attractive for CIGS solar cell 

fabrication if we can eliminate the PVD step. We worked toward this goal.  Our near-term goal 

was to minimize the PVD step to only a few nanometer depositions while maintaining the high 

efficiency (>14% efficiency).  We added up to 50% material by PVD to obtain 15.4%-efficient 

devices.  The optimization of the deposition condition using buffer solution helped to increase 

the In and Ga concentration in the precursor films, which cut down the PVD step to only 10%–

20% of total materials, but maximum efficiency obtained for such devices was 9.4% [15].  The 

electrodeposition processing will be attractive if the following tasks are accomplishes: (1) The 

development of a processing condition that will lead to uniform gallium distribution, thus 

improving the device efficiency; (2) Demonstration of >14% device efficiency on large-area 

substrates (minimum recommended area = 8 in. x 8 in.); and (3) Elimination of the PVD step 

while maintaining the device efficiency >14%.   
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